Algebra 1A Homework 4.3 Question \#7

Example \#1

$(0,0)(1,4)(2,16)(3,36)(4,64)$
List the ordered pairs in a table.

x	y
0	0
1	4
2	16
3	36
4	64

The patterns in Lesson 4-3 seem to be either linear, quadratic $\left(x^{2}\right)$, or cubic $\left(x^{3}\right)$. We can easily see that the y-values in this pattern are not increasing in a linear way. So we can try quadratic first. Then if we need to, we'll try cubic.

x	y	x^{2}
0	0	0
1	4	1
2	16	4
3	36	9
4	64	16

Compare the values in the y-column with values in the x^{2}-column. Notice that if we multiply each of the x^{2} values by 4 , we get exactly the y-values. So the function we're looking for is $y=4 x^{2}$.

x	y	x^{2}	$4 x^{2}$
0	0	0	0
1	4	1	4
2	16	4	16
3	36	9	36
4	64	16	64

Example \#2

$(0,0)(1,3)(2,12)(3,27)(4,48)$
List the ordered pairs in a table.

x	y
0	0
1	3
2	12
3	27
4	48

The patterns in Lesson 4-3 seem to be either linear, quadratic $\left(x^{2}\right)$, or cubic $\left(x^{3}\right)$. We can easily see that the y-values in this pattern are not increasing in a linear way. So we can try quadratic first. Then if we need to, we'll try cubic.

x	y	x^{2}
0	0	0
1	3	1
2	12	4
3	27	9
4	48	16

Compare the values in the y-column with the values in the x^{2}-column. Notice that if we multiply each of the $x^{2}-$ values by 3 , we get exactly the y-values. So the function we're looking for is $y=3 x^{2}$.

x	y	x^{2}	$3 x^{2}$
0	0	0	0
1	3	1	3
2	12	4	12
3	27	9	27
4	48	16	48

$(0,0)(1,5)(2,40)(3,135)(4,320)$
List the ordered pairs in a table.

x	y
0	0
1	5
2	40
3	135
4	320

The patterns in Lesson 4-3 seem to be either linear, quadratic (x^{2}), or cubic (x^{3}). We can easily see that the y-values in this pattern are not increasing in a linear way. So we can try quadratic first. Then if we need to, we'll try cubic.

x	y	x^{2}
0	0	0
1	5	1
2	40	4
3	135	9
4	320	16

Compare the values in the y-column with the values in the x^{2}-column. There is not one constant number that we can multiply the x^{2}-values with in order to get the y values. At this point we should try the cubic function instead.

x	y	x^{2}	x^{3}
0	0	0	0
1	5	1	1
2	40	4	8
3	135	9	27
4	320	16	48

(Continued...)
(Example \#3 continued)
Now compare the values in the y-column with the values in the x^{3}-column. Notice that if we multiply each of the x^{3}-values by 5 , we get exactly the y-values. So the function we're looking for is $y=5 x^{3}$.

x	y	x^{2}	x^{3}	$5 x^{3}$
0	0	0	0	0
1	5	1	1	5
2	40	4	8	40
3	135	9	27	135
4	320	16	48	320

