Precalculus B

Homework 6.2 Question 19

The exercise is this:

Find the vector(s) \mathbf{v} satisfying the given conditions.

$$
\mathbf{u}=\langle 3,2\rangle, \mathbf{u} \cdot \mathbf{v}=-8,|\mathbf{v}|^{2}=61
$$

From Section 6.2 Page 467 of the textbook we reference these definitions:

DEFINITION Dot Product

The dot product or inner product of $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}
$$

Properties of the Dot Product

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors and let c be a scalar.

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$
3. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
4. $\mathbf{0} \cdot \mathbf{u}=0$
$(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
5. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$

Step 1: Use the information given to set up a system of equations

We know $u \bullet v=u_{1} v_{1}+u_{2} v_{2}$ and from the given information $u \bullet v=-8$. We can set the two expressions equal to each other. Also replace the variables u_{1} and u_{2} with their actual values.

$$
\begin{aligned}
& u_{1} v_{1}+u_{2} v_{2}=-8 \\
& 3 v_{1}+2 v_{2}=-8
\end{aligned}
$$

We know $|v|^{2}=v \cdot v=v_{1} v_{1}+v_{2} v_{2}$ and from the given information $|v|^{2}=61$. We can set these two expressions equal to each other and rewrite the terms with exponents.

$$
\begin{aligned}
& v_{1} v_{1}+v_{2} v_{2}=61 \\
& v_{1}^{2}+v_{2}^{2}=61
\end{aligned}
$$

Now we have this system of two equations with two variables. We can solve the system.

$$
\begin{aligned}
& 3 v_{1}+2 v_{2}=-8 \\
& v_{1}^{2}+v_{2}^{2}=61
\end{aligned}
$$

Step 2: Solve the system using Substitution method.

We learned in second year algebra how to solve systems using substitution. Typical problems used variables x and y instead. So let's temporarily use variables x and y in place of v_{1} and v_{2}.

$$
\begin{aligned}
& \text { Let } x=v_{1} \\
& \text { Let } \mathrm{y}=\mathrm{v}_{2}
\end{aligned}
$$

This gives us a system with x and y variables.

$$
\begin{aligned}
& 3 x+2 y=-8 \\
& x^{2}+y^{2}=61
\end{aligned}
$$

Take the first equation and solve for y in terms of x.

$$
\begin{aligned}
3 x+2 y & =-8 \\
2 y & =-3 x-8 \\
y & =\frac{-3 x-8}{2}
\end{aligned}
$$

Substitute this expression for y into the second equation. Multiply every term on both sides by 4. This will get rid of any fractions for now.

$$
\begin{aligned}
x^{2}+y^{2} & =61 \\
x^{2}+\left(\frac{-3 x-8}{2}\right)^{2} & =61 \\
(4) x^{2}+(4)\left(\frac{-3 x-8}{2}\right)^{2} & =(4) 61 \\
4 x^{2}+(-3 x-8)^{2} & =244
\end{aligned}
$$

Expand the binomial, combine like terms, and subtract 244 from both sides. Now we're ready to solve the quadratic using factoring, or else just use the Quadratic Formula.

$$
\begin{aligned}
& 4 x^{2}+(-3 x-8)^{2}=244 \\
& 4 x^{2}+\left(9 x^{2}+48 x+64\right)=244 \\
& 13 x^{2}+48 x+64=244 \\
& 13 x^{2}+48 x-180=0
\end{aligned}
$$

When we solve the quadratic we get two solutions:

$$
\begin{aligned}
& x=6 \\
& x=\frac{30}{13}
\end{aligned}
$$

We substitute both solutions back into one of the earlier equations. That way we can obtain their corresponding y values. It's most convenient to use the equation where we already solved for y in terms of x . This was $y=\frac{-3 x-8}{2}$.

$$
\begin{array}{ll}
\text { For } x=6: & \text { For } x=\frac{30}{13}: \\
y=\frac{-3 x-8}{2} & y=\frac{-3\left(\frac{30}{13}\right)-8}{2} \\
y=\frac{-3(6)-8}{2} & y=\left(-\frac{90}{13}-8\right) \cdot \frac{1}{2} \\
y=5 & y=\left(-\frac{90}{13}-\frac{104}{13}\right) \cdot \frac{1}{2} \\
& y=\left(-\frac{194}{13}\right) \cdot \frac{1}{2} \\
y & y=-\frac{97}{13}
\end{array}
$$

Step 3: Rewrite in vector form

We have two solutions that we solved using x and y variables. But we need to rewrite each of them as vector v.

$$
\begin{aligned}
& (x, y)=(6,5) \\
& (x, y)=\left(\frac{30}{13},-\frac{97}{13}\right) \\
& v=\langle 6,5\rangle \\
& v=\left\langle\frac{30}{13},-\frac{97}{13}\right\rangle
\end{aligned}
$$

