
Topic 1 | Projectile Motion with Air Resistance 

A Case Study in Computer Analysis

In our study of projectile motion, we assumed that air-resistance effects are negli-
gibly small. But in fact air resistance (often called air drag, or simply drag) has a
major effect on the motion of many objects, including tennis balls, bicycle riders,
and airplanes. In Section 5.3 we considered how a fluid resistance force affected
a body falling straight down. We’d now like to extend this analysis to a projectile
moving in a plane.

It’s not difficult to include the force of air resistance in the equations for a pro-
jectile, but solving them for the position and velocity as functions of time, or the
shape of the path, can get quite complex. Fortunately, it is fairly easy to make
quite precise numerical approximations to these solutions, using a computer.
That’s what this section is about.

When we omitted air drag, the only force acting on a projectile with mass m
was its weight w ù mg. The components of the projectile’s acceleration were simply

The +x-axis is horizontal, and the +y-axis is vertically upward. We must now
include the air drag force acting on the projectile. At the speed of a tossed tennis
ball or faster, the magnitude f of the air drag force is approximately proportional
to the square of the projectile’s speed relative to the air:

(T1.1)

where v2 = vx
2 + vy

2. We’ll assume that the air is still, so µ is the velocity of the pro-
jectile relative to the ground as well as to the air (Fig. T1.1a). The direction of f is
opposite the direction of µ, so we can write f ù –Dvµ and the components of f are

Note that each component is opposite in direction to the corresponding compo-
nent of velocity and that The free-body diagram is shown in
Fig. T1.1b. Newton’s second law gives

and the components of acceleration including the effects of both gravity and air
drag are

(T1.2)

The constant D depends on the density of air, the silhouette area A of the
body (its area as seen from the front), and a dimensionless constant C called the
drag coefficient that depends on the shape of the body. Typical values of C for
baseballs, tennis balls, and the like are in the range from 0.2 to 1.0. In terms of
these quantities, D is given by
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T1.1 (a) A projectile in flight with velocityµ relative to the ground. (b) Free-body dia-
gram for the projectile. In still air, the air
drag force f is always directed opposite µ .
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Now comes the basic idea of our numerical calculation. The acceleration com-
ponents ax and ay are constantly changing as the velocity components change. But
over a sufficiently short time interval ∆ t, we can regard the acceleration as essen-
tially constant. If we know the coordinates and velocity components at some time
t, we can find these quantities at a slightly later time t + ∆ t using the formulas for
constant acceleration. Here’s how we do it. During a time interval ∆ t, the average
x-component of acceleration is ax = ∆vx /∆ t and the x-velocity vx changes by an
amount ∆vx = ax ∆ t. Similarly, vy changes by an amount ∆v y = ay ∆ t. So the val-
ues of the x-velocity and y-velocity at the end of the interval are

(T1.4)

While this is happening, the projectile is moving, so the coordinates are also
changing. The average x-velocity during the time interval ∆ t is the average of the
value vx (at the beginning of the interval) and vx + ∆vx (at the end of the interval),
or vx + ∆vx /2. During ∆ t the coordinate x changes by an amount

and similarly for y. Compare this to Eq. (T2.12) for motion with constant acceler-
ation; it’s exactly the same expression. So the coordinates of the projectile at the
end of the interval are

(T1.5)

We have to specify the starting conditions, that is, the initial values of x, y, vx,
and vy. Then we can step through the calculation to find the position and velocity
at the end of each interval in terms of their values at the beginning, and thus to
find the values at the end of any number of intervals. It would be a lot of work to
do all the calculations for 100 or more steps with a hand calculator, but the com-
puter does it for us quickly and accurately.

Exactly how you implement this plan depends on whether you use a computer 
language such as C++, BASIC, FORTRAN, or Pascal or use a spreadsheet or a
numerical-analysis software package such as MathCad. Here’s a sketch of a gen-
eral algorithm using a programming language. 

Step 1: Identify the parameters of the problem, m, A, C, and r, and evaluate D.
Step 2: Choose the time interval ∆ t and the initial values of x, y, vx, vy and t. You
may want to express the initial velocity components in terms of the magnitude v0

and direction a 0 of the initial velocity. 
Step 3: Choose the maximum number of intervals N or the maximum time
tmax = N∆ t for which you want to get the numerical solution. 
Step 4: Loop (or iterate) Steps 5 through 9 while n < N or t < tmax:

Step 5: Calculate the acceleration components.

Step 6: Print or plot x, y, vx, vy, ax, and ay.
Step 7: Calculate the new velocity components from Eq. (T1.4):

Step 8: Calculate the new coordinates from Eq. (T1.5):
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Step 9: Increment the time by ∆ t:

Step 10: Stop.

If you are using a spreadsheet, the following notation may be useful. Let x(n),
y(n), vx(n), and vy(n) be the values at the end of the nth interval. These values
appear across the nth line of the spreadsheet. The initial values are x(1), y(1),
vx(1), and vy(1). Then Eqs. (T1.4) and (T1.5) become

In Eqs. (T1.6) and (T1.7) we compute ax(n) and ay(n) by substituting the values
vx(n) and vy(n) into Eq. (T1.2).

Figure T1.2 shows the trajectory of a baseball with and without air drag. The
radius of the baseball is r = 0.0366 m, and A = pr 2. The mass is m = 0.145 kg, and
we have chosen the drag coefficient to be C = 0.5 (appropriate for a batted ball or
pitched fastball) and the density of air to be = 1.2 kg/m3 (appropriate for a ball-
park at sea level). In this example the baseball was given an initial velocity of 
50 m/s at an angle of 35° above the +x-axis. You can see that both the range of the
baseball and the maximum height reached are substantially less than the zero-drag
calculation would lead you to believe. Calculating a baseball’s trajectory and
ignoring air drag is quite unrealistic. Air drag is an important part of the game of
baseball!
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T1.2 Computer-generated trajectories of 
a baseball with and without drag. Note that
different scales are used on the horizontal
and vertical axes.
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